返回主站|会员中心|保存桌面|手机浏览
普通会员

百大专升本

结婚礼物,生日礼物,祝寿礼物,订婚礼物,高升祝贺送礼,喜得贵子祝贺送礼,感恩...

新闻分类
  • 暂无分类
站内搜索
 
友情链接
  • 暂无链接
首页 > 新闻中心 > 华中农大近期科学研究进展
新闻中心
华中农大近期科学研究进展
发布时间:2021-04-18        浏览次数:0        返回列表

  近日,华中农业大学油菜团队与美国密苏里大学圣路易斯分校/唐纳德丹佛斯植物科学中心的最新合作研究成果发表,研究揭示了植物非特异性磷脂酶C4的定位机制。

  非特异性磷脂酶C(non-specific phospholipase C,NPC)是植物特有的一类磷脂酶家族,因其对底物没有特异性而得名。拟南芥有6个NPC基因,研究表明,不同NPC在植物的生长发育和逆境响应过程中发挥着完全不同的作用,NPC功能上的差异可能由于它们的亚细胞定位不同造成的。NPC4与NPC5氨基酸序列相似性达88%,NPC4和NPC5都不存在跨膜结构域,NPC5定位于胞质中,而NPC4则定位于细胞质膜,NPC4的细胞质膜定位机制仍然未知。

  在该研究中,研究者分析发现NPC4的C末端比NPC5多了17个氨基酸,对NPC4的C末端进行截短,发现NPC4Δ17定位于细胞质中,表明NPC4蛋白质C末端17氨基酸对于其细胞质膜定位是必须的。进一步分析发现不同物种NPC4的C末端序列存在一个保守的半胱氨酸(cysteine,cys)位点,对NPC4第533位的半胱氨酸(Cys-533)进行点突变,发现NPC4C533A也定位于细胞质中,表明该位点Cys决定了其细胞质膜定位。Cys位点酰基化修饰是决定蛋白质亚细胞定位的一种重要方式,通过酰基化检测、体外酶活、质谱分析等鉴定到拟南芥NPC4的Cys-533为棕榈酸酰基化修饰。进一步分析发现,定位于细胞质膜的油菜BnaC01.NPC4第531位的半胱氨酸也受到了棕榈酸酰化修饰。

  为了研究NPC4的酰基化修饰是否是其水解细胞质膜脂筏中鞘脂的关键,研究者发现NPC4C533A的突变不影响其酶活,通过互补实验发现NPC4C533A无法回补npc4突变体在缺磷条件下鞘脂代谢的缺陷,这是由于NPC4C533A定位于细胞质中,无法水解细胞质膜脂筏中的鞘脂。以上结果表明,蛋白质C末端半胱氨酸的棕榈酸酰基化修饰导致NPC4定位于细胞质膜,进而决定了其在缺磷条件下参与膜脂重塑的功能。

  本研究进一步解析了磷脂酶在植物缺磷胁迫下膜质重塑的作用机制,揭示了非特异性磷脂酶C功能差异的分子机制,为植物进一步提高磷素利用效率、提高作物产量提供理论基础和指导。

  近日,华中农业大学水稻科研团队在研究中解析了水稻适应长日照成花的分子复合物模型,为调控水稻品种地域适应性、提高产量提供了新的途径。

  植物开花调控的分子机制比较保守,一般在叶片的韧皮部形成“开花素”(florigen)。“开花素”经过维管束运输到茎顶端分生组织形成成花素激活复合物(Florigen activation complex, FAC),启动植物由营养生长转向生殖生长。因此,成花素激活复合物的形成决定了植物开花的时间及农作物品种种植的区域。水稻作为重要的粮食作物和基因组研究的模式植物,抽穗期决定了品种的季节和地区适应性,是影响其产量的重要因素之一。

  虽然水稻在短日照条件下容易诱导其抽穗(成花转换),但经历长期的人工选择,培育出了大量适宜在高纬度(长日照条件)适时抽穗的水稻品种。水稻基因组中已鉴定了2个重要的开花素基因Hd3a和RFT1,它们分别是短日照和长日照条件下促进抽穗的主效基因。在短日条件下,开花素Hd3a与14-3-3受体蛋白互作形成Hd3a/14-3-3复合物,然后与茎顶端分生组织中的OsFD1蛋白结合形成成花素激活复合物促进水稻成花转换。然而,水稻在长日照条件下成花素激活复合物形成的分子机制尚不清楚。▲水稻成花素激活复合物形成的分子模型

  研究人员通过酵母双杂交、GST pull-down、BIFC等实验,发现开花素RFT1通过14-3-3蛋白与磷酸化的成花启动基因OsFD1蛋白互作形成三元成花素激活复合物,从而行使在长日照条件下启动水稻成花转换的功能。研究发现,OsFD1中192位丝氨酸(S192)残基的磷酸化修饰对成花素激活复合物形成至关重要。进一步利用蛋白互作实验鉴定了一个负责对OsFD1磷酸化的蛋白激酶OsCIPK3。生化分析表明,OsCIPK3蛋白具有蛋白激酶活性,且证明OsCIPK3可以磷酸化修饰OsFD1蛋白的第192位丝氨酸位点。OsFD1的磷酸化修饰有利于成花素激活复合物进入细胞核,促进水稻由营养生长向生殖生长的转换。

  遗传分析表明,OsCIPK3突变体表现为在长日照条件下晚抽穗,但短日照条件下抽穗期与野生型一致。OsCIPK3突变明显增加了穗的分枝数和小穗数,田间试验单株产量增加40%以上,表明OsCIPK3基因具有重要的育种利用价值。进一步通过生化实验分析表明,OsCIPK3主要负责在长日照条件下对OsFD1蛋白的磷酸化修饰,短日照条件下可能由其他的蛋白激酶参与OsFD1的磷酸化修饰,从而形成成花素激活复合物。

  近日,华中农业大学作物遗传改良国家重点实验室周道绣课题组首次在真核生物中报道了组蛋白去乙酰化酶对核糖体蛋白乙酰化修饰的调控及其功能的影响。该研究将蛋白的赖氨酸乙酰化修饰调控从转录水平扩展到蛋白质翻译水平,拓展和深化了人们对于表观调控机制的认知。

  细胞中蛋白质功能的精细调控对于生物生长和发育至关重要,其中蛋白质的乙酰化、磷酸化等翻译后修饰是一种可逆、迅速且经济节约的调控方式。赖氨酸乙酰化(Kac)是一种以乙酰辅酶A为供体的蛋白质翻译后修饰。华中农业大学作物遗传改良国家重点实验室周道绣课题组基于质谱的蛋白质组学数据发现,乙酰化修饰不仅仅发生在组蛋白上,而且也广泛存在于细胞质中具有多种功能的代谢酶、转录因子及核糖体蛋白等非组蛋白上。该课题组之前解析了组蛋白去乙酰化酶(Histone deacetylase, HDAC)特异去除细胞质代谢酶和转录因子乙酰化修饰的作用机制。然而,核糖体蛋白是否也受组蛋白(去)乙酰化酶的调控以及乙酰化修饰对核糖体蛋白的调控功能还不是十分清楚。▲HDAC对组蛋白以及核糖体蛋白乙酰化修饰的调控

  本研究中,作者首先对水稻中3个细胞质定位的组蛋白去乙酰化酶HDA705、 HDA706和 HDA714突变体进行了全蛋白组乙酰化修饰谱定量分析,发现组蛋白去乙酰化酶HDA714是水稻非组蛋白乙酰化的主要调控因子,该基因突变后导致大量非组蛋白乙酰化修饰水平上升,其中包括参与翻译过程的核糖体蛋白及翻译因子。

  乙酰辅酶A不仅仅是乙酰化酶的底物,而且也是非常重要的中间能量代谢产物,蛋白质乙酰化可能反应了细胞内能量代谢水平。HDAC调控的组蛋白代谢和核糖体乙酰化揭示了植物蛋白能量代谢在协调基因表达和翻译中的功能。生化实验进一步表明水稻组蛋白去乙酰化酶HDA714可以特异地去除核糖体蛋白赖氨酸上的乙酰化修饰。

  hda714翻译组学分析表明核糖体蛋白的乙酰化修饰可以促进核糖体与mRNA的结合,对蛋白的翻译效率进行调控。该研究将蛋白的赖氨酸乙酰化修饰调控从转录水平扩展到蛋白质翻译水平,拓展和深化了人们对于表观调控机制的认知,对非组蛋白乙酰化功能的后续研究具有指导意义。